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Abstract It is undeniable that the annular fin of hyperbolic profile with constant thermal
conductivity and uniform convective coefficient is important in many applications of heat transfer
engineering. The importance of this fin configuration stems from its close resemblance to the
annular fin of optimal cross section capable of delivering maximum heat transfer for a given
volume of material. This paper addresses two simple numerical procedures for solving the
generalized Bessel equation that governs the temperature variation in annular fins of hyperbolic
profile, one is the finite-difference technique with an uncharacteristic coarse mesh and the other is
the shooting method. Certainly, the central objective here is to avoid the evaluation of the elegant,
but intricate exact analytic temperature distributions and companion fin efficiencies containing
modified Bessel functions of fractional order.
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Nomenclature
Ap ¼ profile area, m2

c ¼ normalized radii ratio, r1/r2
h ¼ convective coefficient, W/m2K
H 2 ¼ thermo-geometric parameter,

h(1/d1r1)/k, 1/m
Hn (*) ¼ modified Bessel function of

second kind and order n
In (*) ¼ modified Bessel function of first

kind and order n
k ¼ thermal conductivity, W/mK
M 2 ¼ dimensionless H 2 or modified

Biot number, H 2r32
Q ¼ heat transfer rate, W

Qideal ¼ ideal heat transfer rate, W
Qref ¼ reference heat transfer rate, W
r ¼ radial coordinate, m
r1 ¼ inner radius, m
r2 ¼ outer radius, m
R ¼ dimensionless r, r/r2
T ¼ temperature, K
Tb ¼ base temperature, K
Tt ¼ tip temperature,

T (r2), K
T1 ¼ fluid temperature, K
w ¼ length, r22r1, m
y(r) ¼ profile function t (r1/r), m
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Introduction
Annular finned tubes are commonly used in a variety of liquid-gas heat exchange
devices with the purpose of augmenting the transfer of heat from primary tube
surfaces to adjacent gas streams (Hewitt et al., 1993; Kraus et al., 2000; Webb, 1994).
Typical applications of annular finned tubes are found in air-cooled engines of
motorcycles and automobiles, HVAC systems, etc.

In modern era, heat exchange devices
are becoming increasingly sophisticated and continually require greater precision,
adequate sizing, improved reliability, and extended life (Hewitt et al., 1993; Kraus et al.,
2000; Webb, 1994). To meet these stringent demands, exceptional fin profiles have been
ceaseless explored in theoretical studies, numerical simulations and experimental
measurements all over the world (Hewitt et al., 1993; Kraus et al., 2000; Webb, 1994). In
this regard, the annular fin of hyperbolic profile turns out to be the foremost important
fin that can be attached to round tubes because it resembles the optimal annular fin of
convex parabolic profile discovered by Schmidt (1926). Unquestionably, the latter has
become staple in heat transfer engineering because of its unique ability to reject
maximum heat transfer for a given volume of metallic material (Hewitt et al., 1993;
Kraus et al., 2000; Webb, 1994).

From a fundamental standpoint, the
temperature change along an annular fin of hyperbolic profile with constant thermal
conductivity and uniform convective coefficient is governed by a two-term differential
equation of second-order with a variable coefficient. By virtue of a proper
transformation, the differential equation falls under the category of a generalized
Bessel equation. Although this equation admits an exact analytical solution, it is of
intricate form because of the presence of modified Bessel functions of fractional order.
Hence, the numerical evaluation of temperatures and/or heat transfer rates is quite
complicated and time-consuming.

Setting aside the use of modified
Bessel functions deliberately, this paper addresses two simple numerical procedures
for solving the one-dimensional fin equation that governs the annular fin of hyperbolic
profile. The two procedures are the finite-difference technique with an uncharacteristic
coarse mesh and the shooting method. In the former, small systems of algebraic
equations were solved with the elimination of unknowns by hand, whereas large
systems if necessary could be solved with the Gauss elimination method. In the latter, a
fourth-order Runge-Kutta integration algorithm was paired with a standard linear
interpolation formula for solving the system of two differential equations of first-order.
All numerical calculations were carried out with the symbolic algebra software Maple
(Redfern, 1996) on a personal computer.

Generalized Bessel equation
Figure 1 shows the path of two symmetric hyperbola yðrÞ ¼ dðr1=rÞ bounding a
tapered annular fin that features four dimensions: the inner radius r1, the inner

z ¼ dimensionless temperature
gradient, du/dR

d1 ¼ inner semi-thickness, m
d2 ¼ outer semi-thickness, m
h ¼ fin efficiency, Q/Qideal

u ¼ dimensionless
T, (T 2 T1)/(Tb2T1)

s ¼ alternative dimensionless heat
loss, equation (12)
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semi-thickness d1, the outer radius r2 and the outer semi-thickness d2. Schneider (1955)
stated that this kind of fin configuration, appropriately called the annular fin of
hyperbolic profile, is of remarkable notoriety because of its close resemblance to the
optimal annular fin of convex parabolic profile, which is capable of delivering
maximum heat transfer for a given volume of material (Schmidt, 1926).
Unquestionably, the pitfall of the optimal annular fin of convex parabolic profile is
its sharp tip because it may jeopardize the safety of technical personnel working in
plant environments.

Under the assumption of constant thermal conductivity k and uniform convective
coefficient h, the transfer of heat from an annular fin of hyperbolic profile to a
surrounding fluid is modeled by the dimensionless fin equation (Schneider, 1955):

R 2 d2u

dR 2
2 M 2R 3u ¼ 0 ð1Þ

where the normalized dimensionless variables for the temperature u and radial
variable R are

Figure 1.
Sketch of an annular fin of
hyperbolic profile
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u ¼
T 2 T1

Tb 2 T1

; R ¼
r

r2
ð2Þ

The boundary conditions imposed on equation (1) are prescribed temperature at the
fin base

u ¼ 1; R ¼ c ð3aÞ

and negligible heat loss at the fin tip

du

dR
¼ 0; R ¼ 1 ð3bÞ

In view of the foregoing, two parameters characterize the temperature variation along
the annular fin of hyperbolic profile. One is the thermo-geometric parameter M 2 ¼
hðr32=d1r1Þ=k appearing in equation (1), which fundamentally speaking may be viewed
as an enlarged Biot number. The other is a geometric parameter, the normalized radii
ratio 0 , c ¼ r1=r2 # 1 surfacing up in equation (3a).

The heat transfer rate Q from a fin to a neighboring fluid is customarily computed
in an indirect manner with the fin efficiency h ¼ Q=Qideal: Hence, two avenues are
possible:

(1) utilizing the derivative of u(R) at the fin base:

h ¼
Q

Qideal
¼

22 du
dR jR¼c

M 2ð12 c2Þ
ð4Þ

or

(2) employing the integral of u(R) over the fin length:

h ¼
Q

Qideal
¼

2
R 1

c
uR dR

ð12 c 2Þ
ð5Þ

Solution procedures
With a proper transformation, equation (1) falls under the category of a generalized
Bessel type equation (Arpaci, 1966).

Exact analytical method
The exact analytic solution of equations (1) and (2) taken from Schneider (1955), gives
way to the dimensionless temperature distribution u(R):

uðRÞ ¼

ffiffiffiffi
R

c

r
I 1=3

2
3 MR 3=2
� �

I 2=3
2
3 M
� �

2 I21=3
2
3 MR 3=2
� �

I22=3
2
3 M
� �

I 1=3
2
3 Mc 3=2
� �

I 2=3
2
3 M
� �

2 I21=3
2
3 Mc 3=2
� �

I22=3
2
3 M
� �

" #
ð6Þ

Similarly, the exact analytic fin efficiency h taken from Schneider (1955) is:
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h ¼
2c 1=2

M ð12 c 2Þ

I22=3
2
3 Mc3=2
� �

I 2=3
2
3 M
� �

2 I 2=3
2
3 Mc 3=2
� �

I22=3
2
3 M
� �

I21=3
2
3 Mc3=2
� �

I22=3
2
3 M
� �

2 I 1=3
2
3 Mc3=2
� �

I 2=3
2
3 M
� �

" #
ð7Þ

where In (*) is the modified Bessel function of first kind and order n and Hn (*) is the
modified Bessel function of second kind and order n.

To quantify the heat transfer rate Q from the annular fin of hyperbolic profile, it
becomes evident that the evaluation of equation (7) involving modified Bessel function
of fractional order is a laborious task even with the help of a symbolic algebra code,
like Maple (Redfern, 1996). On the other hand, numerical values of the fin efficiency
may be approximately read from the fin efficiency diagram in Schneider (1955).
Surprisingly, only three curves for the radii ratios: c ¼ 1; 1/2 and 1/4 are portrayed in
the fin efficiency diagram (Schneider, 1955). Therefore, for other radii ratios contained
in the realistic interval 1=4 # c # 1; the interpolation between points in the three
curves turns out to be tedious and somehow inaccurate.

Finite-difference technique
The fin region c # R # 1 is divided into I equal intervals of size DR ¼ ð12 cÞ=I :
Employing the central formulation for the derivative of second-order with a truncation
error of order (DR)2 (Hildebrand, 1988), the differential equation (1) is converted into the
following finite-difference equation

uiþ1 2 ½2þ M 2ðDRÞ2Ri�ui þ ui21 ¼ 0 ð8Þ

where i ¼ 0; 1; 2; . . .; I :
The first boundary condition in equation (3a) gives way to u0 ¼ 1 in equation (8).

For the second boundary condition in equation (3b), the central formulation with a
truncation error of order (DR)2 sets off the equality uIþ1 ¼ ui21 in equation (8). With
these additions, equation (8) furnishes a system of I algebraic equations for the I node
temperatures uI where i ¼ 1; 2; . . .; I :

Shooting method
The shooting method is a numerical procedure that consists in a mathematical
transformation of a well posed two-point boundary value problem into an equivalent,
but incomplete initial value problem (Hildebrand, 1988).

Letting du=dR ¼ z; the second-order differential equation (1) is transformed into the
following system of two differential equations of first-order:

du

dR
¼ z ð9Þ

dz

dR
¼ 2M 2Ru ð10Þ

in which the dependent variables are the temperature u and the temperature gradient z.
Conceptually, the proper specification of an initial value problem in the R-domain

[c, 1] demands the application of two initial conditions at the left extreme R ¼ c: One
initial condition for u is obtained from equation (3a), whereas the other initial condition
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for z is missing and must be guessed up front. The satisfaction of the far away
boundary condition, namely du=dR ¼ 0 at the right extreme R ¼ 1; needs to be
fulfilled. In other words, this statement signifies that the dimensionless temperature
gradient zð1Þ ¼ 0 in compliance with equation (3b).

Representative test case
An annular fin of hyperbolic profile envelops a round metallic tube of given radius r1.
Heat is rejected from the annular fin to a neighboring fluid at a temperature T1. The fin
base has a fixed temperature Tb and the heat loss through the fin tip is considered
insignificant. The fin is constructed with a metal of constant thermal conductivity k in
the temperature interval of operation T1 # T # Tb: Assuming that the convective
coefficient h is uniform, the goal is to calculate the temperature distribution and the
heat transfer rate using two numerical procedures: the finite-difference technique and
the shooting method.

To demonstrate the feasibility of the two powerful numerical procedures, it suffices
to study one typical fin/fluid assembly only. For instance, let us select a fin/fluid
assembly characterized by a normalized radii ratio c ¼ 1=4 and a modified Biot
number M 2 ¼ 6:572; which constitutes a reasonable point of reference. The exact fin
efficiency h ¼ 0:523 was pulled out from the fin efficiency diagram in Schneider (1955).

Finite-difference technique
The annular fin of hyperbolic profile is first divided into three equal intervals of size
DR ¼ 1=4: With this coarse mesh, a system consisting of three algebraic equations
relates to the three nodal temperatures u1, u2, u3:

at i ¼ 1; 2:206u1 2 u2 ¼ 1

at i ¼ 2; u1 2 2:308u2 þ u3 ¼ 0

at i ¼ 3; 2u2 2 2:411u3 ¼ 0

ð11Þ

Clearly, the above system being small can be easily solved by elimination by hand.
The nodal temperatures with inherent truncation errors of order 1/16 are listed in the
accompanying Table I.

Next, the numerical calculation of the fin efficiency h may be determined by hand
too. For the numerical evaluation of the derivative of first-order in equation (4), a
two-point forward and a three-point forward formulations are employed having
respective truncation errors of order DR and (DR)2 (Hildebrand, 1988). Doing the
algebra, the fin efficiencies turn out to be h ¼ 0:451 for the two-point forward
formulation and 0.540 for the three-point forward formulation. Subsequently, the

R u

R0¼0.25 u0¼1
R1¼0.50 u1¼0.653
R2¼0.75 u2¼0.442
R3¼1 u3¼0.367

Table I.
Temperature distribution

produced by the
finite-difference

technique for c ¼ 1/4 and
M 2¼6.572
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numerical integration of the integral I in equation (5) can be performed with the
trapezoidal and Simpson’s 3/8 rules whose respective truncation errors are of order DR
and (DR)2 (Hildebrand, 1988). Once the algebra has been completed, the corresponding
values of the fin efficiencies are h ¼ 0:516 and 0.519. In view of this, it is evident that
with the exception of the two-point forward formulation for the derivative of
first-order, the accuracy of the other three numerically computed efficiencies stays
within a few percent of the exact value of h ¼ 0:523: In addition, it may be realized that
the better three-point forward formulation for the derivative underpredicts the exact fin
efficiency whereas the two integration approaches overpredict the exact fin efficiency.

From the framework of conventional thermal performance, annular fins of any cross
section should operate with efficiencies near one; that is much greater than the 0.523
chosen here. In other words, this statement implies a subset of fin/fluid assemblies
characterized by the tandem of parameters c . 1=4 and M 2 , 6:572: These
assemblies can be safely analyzed with a coarse mesh related to small systems of
algebraic equations. However, in the unlikely event that a fine mesh becomes
necessary, large systems of algebraic equations may be solved with the Gaussian
elimination method and the symbolic algebra software Maple (Redfern, 1996).

Shooting method
The nature of the mixed boundary conditions in equation (3a) and (3b) suggests that
the temperature starts with u ¼ 1 at the base R ¼ 1=4: Thereafter, the temperature u
decreases monotonically with R, so that the temperature slope z ¼ du=dR of the
temperature curve u(R) is always negative. In addition, it may be inferred that the
largest temperature slope z occurs at the base R ¼ 1=4; thereafter z decreases
monotonically with R and eventually dies out to zero at the tip R ¼ 1:

Theoretically speaking, to initiate the numerical integration of the system of
equations (9) and (10), we must guess a value of the temperature slope at the base, i.e.
z(1/4). In practice, to speed up the calculations, first z(1/4) may be computed from an
akin straight fin with uniform cross section due to the same thermo-geometric
parameter M 2 ¼ 6:572: For this reference straight fin, the exact temperature
distribution yields the initial temperature slope zð1=4Þ ¼ 20:988:

Among the step sizes DR tested in the numerical experiments, the last two
employed were DR ¼ 0:01 and 0.001. For these, the proper variations of the
temperature distributions u(R) and the temperature gradient distributions du(R)/dR are
shown in Figure 2 along with their corresponding convergence patterns. The numerical
integration of the system of equations (9) and (10) has been done with a fourth-order
Runge-Kutta algorithm (Hildebrand, 1988) using the symbolic algebra software Maple
(Redfern, 1996).

For the successful retrieval of the terminal boundary condition zðuÞ ¼ duð1Þ=dR ¼
0 as given in equation (3b), the conclusion drawn here is that the initial temperature
slope zð1=4Þ ¼ duð1=4Þ=dR must be equal to21.61. Moreover, the optimal step size DR
demanded for the accurate numerical integration of the system of equations (9) and (10)
is 0.001.

Ultimately, inserting the accurate initial temperature slope zð1=4Þ ¼ duð1=4Þ=dR ¼
21:61 into equation (4) furnishes the fin efficiency h ¼ 0:519 right away. This number
compares favorably with the exact efficiency of 0.523 computed by evaluating the
modified Bessel functions of fractional form in (Schneider, 1955). For completeness,
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Table II compares the accuracy of the fin efficiency delivered by the four different
numerical procedures employed here.

Alternative fin efficiency
It is worth mentioning that Shamsundar (2002) has suggested that the fin efficiency
concept is not useful when optimal dimensions are sought to maximize the heat loss for
a given mass of material. For the particular case of an annular fin of hyperbolic profile,
the alternative expression for the dimensionless heat loss s is written as

s ¼
Q

Qref
ð12Þ

where Qref ¼ 4pr1kðTb 2 T1Þ½Ap=2ðh=kÞ2�1=3: Thereby, for a given mass, the profile
area of a hyperbolic annular fin, Ap ¼ 2d1r1lnðr2=r1Þ is constant and s delivers the

Figure 2.
Convergence patterns

exhibited by the
temperature distribution
u(R) and the temperature

gradient distribution
du(R)/dR as calculated by

the shooting method

Exact
Derivative

Two-point (error)
Derivative

Three-point (error)
Integration

Trapezoidal (error)
Integration

3/8 Simpson (error)

0.523 0.451 (213.8 per cent) 0.540 (3.3 per cent) 0.516 (21 per cent) 0.519 (20.8 per cent)

Table II.
Comparison of the

computed fin efficiencies
for c ¼ 1/4 and

M 2¼6.572
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corresponding maximum heat loss Qmax in a natural way. This physical-oriented
approach articulates perfectly with the finite-difference technique and the shooting
method employed here.

Conclusions
The utilization of simple numerical computational procedures fills a definitive gap in
the accessible literature on fin heat transfer (Kraus et al., 2000). Overall, it has been
demonstrated that for the nearly optimal annular fin of hyperbolic profile with
constant thermal conductivity k and uniform convective coefficient h, both
finite-difference technique and shooting method are capable of estimating
temperature distributions and heat transfer rates of good quality with minimal
effort. It should be added that the finite-difference technique with its patented coarse
meshes linked to small systems of algebraic equations in a reduced R-domain [c, 1] is
more attractive than the shooting method. Further, it should be emphasized that the
alternative expression for the dimensionless heat loss s ¼ Q=Qref obtained from
equation (12), seems to be superior than the traditional relation for the fin efficiency
h ¼ Q=Qideal normally used in the heat conduction literature. In fact, the s ratio
elucidates the physics of the problem in a remarkable way.

Finally, this paper includes valuable material for two engineering audiences:

(1) thermal design engineers engaged in real-life engineering practice; and

(2) instructors of courses on heat transfer and/or heat exchangers in the mechanical
and chemical engineering programs.
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